Beirut Solar Map

Sara Najem
National Center for Remote Sensing- CNRS
February 17, 2017
Outline

Energy Demand/Supply in Lebanon

Introduction

Solar Radiation

Algorithm

City Scale Computation of Solar Irradiance

Model Parameters and Assumptions

Results

Ongoing Work
Energy Demand/Supply in Lebanon

- ≈ 95% of the energy needs are imported in the form of fuel.
- National production ≈ 5%.
- Yearly growth in energy demand ≈ 3 – 7%.

salem2009.
salem2009.
chedid2002.
Demand/Supply

Figure: Evolution of the production and supply from 2008 to 2014
Demand/Supply

- The cost of electricity generation is around 23 cents/kWh.
- Subscribers are charged 2.33 to 13.33 cents/kWh.
Energy Crisis

With 3 hours of electricity rationing in Beirut and up to 8 elsewhere in the country we’re particularly interested in estimating the solar energy.
Energy Crisis

Lebanon’s target for 2020: 12 percent of the energy produced from renewables (Copenhagen 2009).

Lebanon also committed to a target of 15% in its Intended Nationally Determined Contributions (INDC) submitted to the COP21 conference.
Solar Maps

- Internationally: Lo Barnechea (Chile), Vitacura (Chile)
Solar Maps

- Regionally, Beirut is the first city to be mapped. It is DSS application designed for National Center of Remote Sensing- CNRS as part of Local-Sats.
Solar Radiation

- Direct radiation.
- Diffuse radiation.
- Reflected radiation.
Solar Radiation
Basic Definitions

- Irradiance is understood as instantaneous density of solar radiation incident on a given surface, typically expressed in W/m^2.
- Irradiation is the sum of irradiance over a time period (e.g., 1 hour, day, month, year, etc.) expressed in J/m^2.
Irradiation

Irradiation is then affected by the sun’s position and cloud coverage and both of which are related to the location’s latitude.
Sun Path

The sun path changes on hourly and monthly scales; this has an effect on the amount of irradiation a surface gets.
Illustrative Animation of the Solar Path
City solar irradiation

For a city things become more complex as overshadowing of rooftops from neighboring buildings comes to play.
Model Parameters and Assumptions

- Flat roof-tops (LIDAR imagery or any 3D data would improve the model’s predictions)
- With water tanks mounted on rooftops only a fraction of the rooftops is usable $\approx 30\%$
Model Parameters and Assumptions

- The fraction of diffuse radiation is taken to be 0.3 throughout the year.
- Panel efficiency is 10%
Average Daily Global Horizontal Irradiation: 2817 Wh/m²
Average Daily Direct Normal Irradiation: 3940 Wh/m²
Global Horizontal Power Covers the Consumption of 6 - 16 subscribers.
Direct Normal Power Covers the Consumption of 8 - 22 subscribers.
Comparison with Climatic Zoning

- The climatic zoning Average Daily Global Horizontal Irradiation (ADGHI) 4854.6Wh/m²
- (ADGHI) is ≈ 2000Wh/m²
- Our computation is carried out in an urban setting taking into consideration overshadowing from neighboring buildings; this explains the discrepancy
Results

- Generation Potential 394 GW/year assuming the whole rooftop area is usable
- 30% usable rooftop yields 118 GW/year.
Results

- Subsequently the savings could range from around $9.8 M to nearly $39.3 M
- CO2 emissions saving could range from 75,920 tCO2 to 322,660 tCO2
Ongoing Work

- The results are now being drafted as a policy paper in collaboration with the Director of the Energy Policy Program at Issam Fares Institute Dr. Ali Ahmad
Ongoing Work

- We are carrying out a study to model Beirut Energy hourly consumption
- Alaa Krayem is our PhD student; she is co-supervised by Dr. Haitham Zaraket of LU and Dr. Issam Lakkis of AUB.
Ongoing Work

Figure: Boston’s Energy Model
Thank you!